Pediatric Cardiac Arrest Algorithm

Pediatric Bradycardia With a Pulse Algorithm

Pediatric Tachycardia With a Pulse Algorithm

Pediatric Septic Shock Algorithm

Pediatric Advanced Life Support

Brierley J, Carcillo JA, Choong K, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37(2):666-688. Kissoon N, Orr RA, Carcillo JA. Updated American College of Critical Care Medicine—pediatric advanced life support guidelines for management of pediatric and neonatal septic shock: relevance to the emergency care clinician. Pediatr Emerg Care. 2010;26(11):867-869.

Management of Shock After ROSC Algorithm

Pediatric Advanced Life Support

Optimize Ventilation and Oxygenation

- Titrate FiO₂ to maintain oxyhemoglobin saturation 94%-99% (or as appropriate to the patient's condition); if possible, wean FiO₂ if saturation is 100%.
- Consider advanced airway placement and waveform capnography.
- If possible, target a PCO₂ that is appropriate for the patient's condition and limit exposure to severe hypercapnia or hypocapnia.

Assess for and Treat Persistent Shock

- Identify and treat contributing factors.
- Consider 20 mL/kg IV/IO boluses of isotonic crystalloid. Consider smaller boluses (eg, 10 mL/kg) if poor cardiac function suspected.
- Consider the need for inotropic and/or vasopressor support for fluid-refractory shock.

Possible Contributing Factors

- **H**ypovolemia
- **H**ypoxia
- Hydrogen ion (acidosis)
- **H**ypoglycemia
- Hypo-/hyperkalemia
- **H**ypothermia
- **T**ension pneumothorax
- Tamponade, cardiac
- **T**oxins
- Thrombosis, pulmonary
- Thrombosis, coronary
- Trauma

Hypotensive Shock

- Epinephrine
- Norepinephrine

Normotensive Shock

- Epinephrine
- Milrinone*
- Monitor for and treat agitation and seizures.
- Monitor for and treat hypoglycemia.
- Assess blood gas, serum electrolytes, and calcium.
- If patient remains comatose after resuscitation from cardiac arrest, maintain targeted temperature management, including aggressive treatment of fever.
- Consider consultation and patient transport to tertiary care center.

*Milrinone can cause hypotension, so use and initiation of it should generally be reserved for those experienced with its use, initiation, and side effects (eg, ICU personnel).

Estimation of Maintenance Fluid Requirements

• Infants <10 kg: 4 mL/kg per hour

Example: For an 8-kg infant, estimated maintenance fluid rate

- = 4 mL/kg per hour × 8 kg
- = 32 mL per hour
- Children 10-20 kg: 4 mL/kg per hour for the first 10 kg + 2 mL/kg per hour for each kg above 10 kg

Example: For a 15-kg child, estimated maintenance fluid rate

- = $(4 \text{ mL/kg per hour} \times 10 \text{ kg})$
 - + (2 mL/kg per hour × 5 kg)
- = 40 mL/hour + 10 mL/hour
- = 50 mL/hour
- Children >20 kg: 4 mL/kg per hour for the first 10 kg + 2 mL/kg per hour for 11-20 kg + 1 mL/kg per hour for each kg above 20 kg.

Example: For a 28-kg child, estimated maintenance fluid rate

- = $(4 \text{ mL/kg per hour} \times 10 \text{ kg})$
 - + (2 mL/kg per hour × 10 kg)
 - + (1 mL/kg per hour × 8 kg)
- = 40 mL per hour + 20 mL per hour
 - +8 mL per hour
- = 68 mL per hour

After initial stabilization, adjust the rate and composition of intravenous fluids based on the patient's clinical condition and state of hydration. In general, provide a continuous infusion of a dextrosecontaining solution for infants. Avoid hypotonic solutions in critically ill children; for most patients use isotonic fluid such as normal saline (0.9% NaCl) or lactated Ringer's solution with or without dextrose, based on the child's clinical status.

Pediatric Color-Coded Length-Based Resuscitation Tape

Pediatric Advanced Life Support

Zone	3 kg	4 kg	5 kg	Pink	Red	Purple	Yellow	White	Blue	Orange	Green
ETT uncuffed (mm)	3.5	3.5	3.5	3.5	3.5	4.0	4.5	5.0	5.5	N/A	N/A
ETT cuffed (mm)	3.0	3.0	3.0	3.0	3.0	3.5	4.0	4.5	5.0	5.5	6.0
Lip-tip (cm)	9-9.5	9.5-10	10-10.5	10-10.5	10.5-11	11-12	12.5-13.5	14-15	15.5-16.5	17-18	18.5-19.5
Suction (F)	8	8	8	8	8	8	10	10	10	10	12
L-scope blade	1 straight	1-1.5 straight	2 straight/ curved	2 straight/ curved	2 straight/ curved	2-3 straight/ curved	2-3 straight/ curved				
Stylet	6 F	6 F	6 F	6 F	6 F	6 F	10 F	10 F	10 F	14 F	14 F
OPA (mm)	50	50	50	50	50	60	60	60	70	80	80
NPA (F)	14	14	14	14	14	18	20	22	24	26	26
Bag-mask device (minimum mL)	450	450	450	450	450	450	450	450-750	750-1000	750-1000	1000
ETCO ₂ detector	Ped	Ped	Ped	Ped	Ped	Ped	Ped	Adult	Adult	Adult	Adult
LMA	1	1	1	1.5	1.5	2	2	2	2-2.5	2.5	3
Tidal volume (mL)	20-30	24-40	30-50	40-65	50-85	65-105	80-130	100-165	125-210	160-265	200-330
Frequency	20-25/min	20-25/min	20-25/min	20-25/min	20-25/min	15-25/min	15-25/min	15-25/min	12-20/min	12-20/min	12-20/min

Abbreviations: ETT, endotracheal tube; F, French; LMA, laryngeal mask airway; NPA, nasopharyngeal airway; OPA, oropharyngeal airway; Ped, pediatric. The Broselow-Luten System Point of Care Guide is © 2020 Vyaire Medical, Inc.; used with permission.

© 2020 American Heart Association

PALS Systematic Approach Algorithm

Components of Post-Cardiac Arrest Care

Oxygenation and ventilation	Check						
Measure oxygenation and target normoxemia 94%-99% (or child's normal/appropriate oxygen saturation).							
Measure and target ${\sf Paco}_2$ appropriate to the patient's underlying condition and limit exposure to severe hypercapnia or hypocapnia.							
Hemodynamic monitoring							
Set specific hemodynamic goals during post–cardiac arrest care and review daily.							
Monitor with cardiac telemetry.							
Monitor arterial blood pressure.							
Monitor serum lactate, urine output, and central venous oxygen saturation to help guide therapies.							
Use parenteral fluid bolus with or without inotropes or vasopressors to maintain a systolic blood pressure greater than the fifth percentile for age and sex.							
Targeted temperature management (TTM)							
Measure and continuously monitor core temperature.							
Prevent and treat fever immediately after arrest and during rewarming.							
If patient is comatose apply TTM (32°C-34°C) followed by (36°C-37.5°C) or only TTM (36°C-37.5°C).							
Prevent shivering.							
Monitor blood pressure and treat hypotension during rewarming.							
Neuromonitoring							
If patient has encephalopathy and resources are available, monitor with continuous electroencephalogram.							
Treat seizures.							
Consider early brain imaging to diagnose treatable causes of cardiac arrest.							
Electrolytes and glucose							
Measure blood glucose and avoid hypoglycemia.							
Maintain electrolytes within normal ranges to avoid possible life-threatening arrhythmias.							
Sedation							
Treat with sedatives and anxiolytics.							
Prognosis							
Always consider multiple modalities (clinical and other) over any single predictive factor.							
Remember that assessments may be modified by TTM or induced hypothermia.							
Consider electroencephalogram in conjunction with other factors within the first 7 days after cardiac arrest.							
Consider neuroimaging such as magnetic resonance imaging during the first 7 days.							